By Topic

Estimation of the Surface Velocity Field of the Aletsch Glacier Using Multibaseline Airborne SAR Interferometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pau Prats ; Microwaves & Radar Inst., German Aerosp. Center (DLR), Oberpfaffenhofen ; Rolf Scheiber ; Andreas Reigber ; Christian Andres
more authors

This paper presents a methodology to process airborne interferometric synthetic aperture radar (SAR) data to measure surface velocity fields (SVFs) of temperate glaciers, and applies it to data acquired over the Aletsch glacier. The first part of this paper deals with the main limitation in airborne interferometric SAR to retrieve reliable interferometric products, namely, the existence of the so-called residual motion errors - inaccuracies on the order of a few centimeters in the navigation system. An extended multisquint approach is proposed for their estimation in the case of nonstationary scenes. The second part of this paper expounds an efficient methodology to derive SVFs with airborne systems, where the line-of-sight displacement is estimated using differential interferometry and the along-track component by estimating the azimuth coregistration offsets. The necessary steps to finally obtain the 3-D SVF are also presented, as well as the possibility of combining different acquisition geometries. Airborne interferometric SAR data acquired by the Experimental SAR system of the German aerospace center over the Aletsch glacier, located in the Swiss Alps, are used to evaluate the performance of the proposed approach. The motion of the corner reflectors deployed in the scene is retrieved with an accuracy between 1 and 5 cm/day using L-band data.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:47 ,  Issue: 2 )