By Topic

Learning Atomic Human Actions Using Variable-Length Markov Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yu-Ming Liang ; Dept. of Comput. Sci., Nat. Chiao Tung Univ., Hsinchu ; Sheng-Wen Shih ; Arthur Chun-Chieh Shih ; Hong-Yuan Mark Liao
more authors

Visual analysis of human behavior has generated considerable interest in the field of computer vision because of its wide spectrum of potential applications. Human behavior can be segmented into atomic actions, each of which indicates a basic and complete movement. Learning and recognizing atomic human actions are essential to human behavior analysis. In this paper, we propose a framework for handling this task using variable-length Markov models (VLMMs). The framework is comprised of the following two modules: a posture labeling module and a VLMM atomic action learning and recognition module. First, a posture template selection algorithm, based on a modified shape context matching technique, is developed. The selected posture templates form a codebook that is used to convert input posture sequences into discrete symbol sequences for subsequent processing. Then, the VLMM technique is applied to learn the training symbol sequences of atomic actions. Finally, the constructed VLMMs are transformed into hidden Markov models (HMMs) for recognizing input atomic actions. This approach combines the advantages of the excellent learning function of a VLMM and the fault-tolerant recognition ability of an HMM. Experiments on realistic data demonstrate the efficacy of the proposed system.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:39 ,  Issue: 1 )