By Topic

Synchronized Submanifold Embedding for Person-Independent Pose Estimation and Beyond

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shuicheng Yan ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Huan Wang ; Yun Fu ; Jun Yan
more authors

Precise 3-D head pose estimation plays a significant role in developing human-computer interfaces and practical face recognition systems. This task is challenging due to the particular appearance variations caused by pose changes for a certain subject. In this paper, the pose data space is considered as a union of submanifolds which characterize different subjects, instead of a single continuous manifold as conventionally regarded. A novel manifold embedding algorithm dually supervised by both identity and pose information, called snchronized submanifold embedding (SSE), is proposed for person-independent precise 3-D pose estimation, which means that the testing subject may not appear in the model training stage. First, the submanifold of a certain subject is approximated as a set of simplexes constructed using neighboring samples. Then, these simplexized submanifolds from different subjects are embedded by synchronizing the locally propagated poses within the simplexes and at the same time maximizing the intrasubmanifold variances. Finally, the pose of a new datum is estimated as the propagated pose of the nearest point within the simplex constructed by its nearest neighbors in the dimensionality reduced feature space. The experiments on the 3-D pose estimation database, CHIL data for CLEAR07 evaluation, and the extended application for age estimation on FG-NET aging database, demonstrate the superiority of SSE over conventional regression algorithms as well as unsupervised manifold learning algorithms.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 1 )