By Topic

A Numerical Study of the Retrieval of Sea Surface Height Profiles From Low Grazing Angle Radar Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Johnson, J.T. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH ; Burkholder, R.J. ; Toporkov, J.V. ; Lyzenga, D.R.
more authors

A numerical study of the retrieval of sea surface height profiles from low grazing angle radar observations is described. The study is based on a numerical method for electromagnetic scattering from 1-D rough sea profiles, combined with the ldquoimproved linear representationrdquo of Creamer for simulating weakly nonlinear sea surface hydrodynamics. Numerical computations are performed for frequencies from 2975 to 3025 MHz so that simulated radar pulse returns are achieved. The geometry utilized models a radar with an antenna height of 14 m, observing the sea surface at ranges from 520 to 1720 m. The low grazing angles of this configuration produce significant shadowing of the sea surface, and standard analytical theories of sea scattering are not directly applicable. Three approaches for retrieving sea height profile information are compared. The first method uses a statistical relationship between the surface height and the computed radar cross sections versus range (an incoherent measurement). A second method uses the phase difference between scattering measurements in two vertically separated antennas (ldquovertical interferometry) in the retrieval. The final technique retrieves height profiles from variations in the apparent Doppler frequency (coherent measurements) versus range and requires that time-stepped simulations be performed. The relative advantages and disadvantages of each of the three approaches are examined and discussed.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 6 )