By Topic

Statistical Hough Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dahyot, R. ; Dept. of Stat., Trinity Coll. Dublin, Dublin

The standard Hough transform is a popular method in image processing and is traditionally estimated using histograms. Densities modeled with histograms in high dimensional space and/or with few observations, can be very sparse and highly demanding in memory. In this paper, we propose first to extend the formulation to continuous kernel estimates. Second, when dependencies in between variables are well taken into account, the estimated density is also robust to noise and insensitive to the choice of the origin of the spatial coordinates. Finally, our new statistical framework is unsupervised (all needed parameters are automatically estimated) and flexible (priors can easily be attached to the observations). We show experimentally that our new modeling encodes better the alignment content of images.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 8 )