By Topic

Accurate Image Search Using the Contextual Dissimilarity Measure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper introduces the contextual dissimilarity measure, which significantly improves the accuracy of bag-of-features-based image search. Our measure takes into account the local distribution of the vectors and iteratively estimates distance update terms in the spirit of Sinkhorn's scaling algorithm, thereby modifying the neighborhood structure. Experimental results show that our approach gives significantly better results than a standard distance and outperforms the state of the art in terms of accuracy on the Nisteacuter-Steweacutenius and Lola data sets. This paper also evaluates the impact of a large number of parameters, including the number of descriptors, the clustering method, the visual vocabulary size, and the distance measure. The optimal parameter choice is shown to be quite context-dependent. In particular, using a large number of descriptors is interesting only when using our dissimilarity measure. We have also evaluated two novel variants: multiple assignment and rank aggregation. They are shown to further improve accuracy at the cost of higher memory usage and lower efficiency.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:32 ,  Issue: 1 )