By Topic

A Novel Visualization Technique for Electric Power Grid Analytics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Pak Chung Wong ; Pacific Northwest Nat. Lab., Richland, WA ; Schneider, K. ; Mackey, P. ; Foote, H.
more authors

The application of information visualization holds tremendous promise for the electric power industry, but its potential has so far not been sufficiently exploited by the visualization community. Prior work on visualizing electric power systems has been limited to depicting raw or processed information on top of a geographic layout. Little effort has been devoted to visualizing the physics of the power grids, which ultimately determines the condition and stability of the electricity infrastructure. Based on this assessment, we developed a novel visualization system prototype, GreenGrid, to explore the planning and monitoring of the North American Electricity Infrastructure. The paper discusses the rationale underlying the GreenGrid design, describes its implementation and performance details, and assesses its strengths and weaknesses against the current geographic-based power grid visualization. We also present a case study using GreenGrid to analyze the information collected moments before the last major electric blackout in the Western United States and Canada, and a usability study to evaluate the practical significance of our design in simulated real-life situations. Our result indicates that many of the disturbance characteristics can be readily identified with the proper form of visualization.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:15 ,  Issue: 3 )