Cart (Loading....) | Create Account
Close category search window

Machine Learning Techniques for the Automated Classification of Adhesin-Like Proteins in the Human Protozoan Parasite Trypanosoma cruzi

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gonzalez, A.M. ; Comput. Sci. Dept., Univ. Autonoma de Madrid, Madrid, Spain ; Azuaje, F.J. ; Ramirez, J.L. ; da Silveira, J.F.
more authors

This paper reports on the evaluation of different machine learning techniques for the automated classification of coding gene sequences obtained from several organisms in terms of their functional role as adhesins. Diverse, biologically-meaningful, sequence-based features were extracted from the sequences and used as inputs to the in silico prediction models. Another contribution of this work is the generation of potentially novel and testable predictions about the surface protein DGF-1 family in Trypanosoma cruzi. Finally, these techniques are potentially useful for the automated annotation of known adhesin-like proteins from the trans-sialidase surface protein family in T. cruzi, the etiological agent of Chagas disease.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:6 ,  Issue: 4 )

Date of Publication:

Oct.-Dec. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.