Cart (Loading....) | Create Account
Close category search window
 

Low voltage ride through capability enhancement of wind turbine generator system during network disturbance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Muyeen, S.M. ; Kitami Inst. of Technol., Kitami ; Takahashi, R. ; Murata, T. ; Tamura, J.
more authors

The energy capacitor system (ECS), composed of power electronic devices and electric double layer capacitor to enhance the low voltage ride through (LVRT) capability of fixed speed wind turbine generator system (WTGS) during network disturbance, is discussed. Control scheme of ECS is based on a sinusoidal pulse width modulation voltage source converter and DC-DC buck/boost converter composed of insulated gate bipolar transistors. Two-mass drive train model of WTGS is adopted because the drive train system modelling has great influence on the characteristics of wind generator system during network fault. Extensive analysis of symmetrical fault is performed with different voltage dip magnitudes and different time durations. Permanent fault because of unsuccessful reclosing is also analysed, which is one of the salient features of this study. A real grid code defined in the power system is considered and LVRT characteristic of WTGS is analysed. Finally, it is concluded that ECS (20 MW) can significantly enhance the LVRT capability of grid connected WTGS (50 MW) during network disturbance, where simulations have been carried out by using PSCAD/EMTDC.

Published in:

Renewable Power Generation, IET  (Volume:3 ,  Issue: 1 )

Date of Publication:

March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.