Cart (Loading....) | Create Account
Close category search window
 

A Regression and Boundary-Crossing-Based Model for the Perception of Delayed Stiffness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nisky, I. ; Dept. of Biomed. Eng., Ben-Gurion Univ. of the Negev, Beer Sheva ; Mussa-Ivaldi, F.A. ; Karniel, A.

The stiffness of the environment with which we come in contact is the local derivative of a force field. The boundary of an elastic field is a singular region where local stiffness is ill-defined. We found that subjects interacting with delayed force fields tend to underestimate stiffness if they do not move across the boundary. In contrast, they tend to overestimate stiffness when they move across the elastic field boundary. We propose a unifying computational model of stiffness perception based on an active process that combines the concurrent operations of a force and of a position-control system.

Published in:

Haptics, IEEE Transactions on  (Volume:1 ,  Issue: 2 )

Date of Publication:

July-Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.