By Topic

HSI color based vehicle license plate detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Deb, K. ; Grad. Sch. of Electr. Eng. & Inf. Syst., Univ. of Ulsan, Ulsan ; Kang-Hyun Jo

Vehicle license plate recognition (VLPR) is one of the most important topics of using computer vision and pattern recognition in intelligent transportation systems. In order to recognize a license plate (LP) expeditiously, the location of the LP in most cases, must be detected in the initial step. For this reason, detecting the exact and perfect location of a LP from a vehicle image is considered to be the most important and crucial step of a VLPR system, which greatly affects the recognition process and directly influences the accuracy and speed of entire system. In this paper a HSI color based license plate detection method is proposed. In this method, (a) HSI color model is used for detecting candidate regions and (b) vehicle license plate (VLP) regions are verified and detected by using position histogram. In the proposed method, input vehicle images are converted into HSI color images. Then the candidate regions are found by HSI color model on the basis of using hue, saturation and/or intensity. These candidate regions may include LP regions; geometrical properties of LP are then used for classification. Finally, VLP regions containing predetermined LP alphanumeric character are verified and detected by using position histogram. The proposed method is very effective in coping with different conditions such as poor illumination and varied weather comparing with traditional approaches. Experimental results show that the distance from the vehicle varied according to the camera setup.

Published in:

Control, Automation and Systems, 2008. ICCAS 2008. International Conference on

Date of Conference:

14-17 Oct. 2008