By Topic

Interference Coordination in Cellular OFDMA Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Marc C. Necker ; University of Stuttgart

Orthogonal frequency division multiple access is the basis for several emerging mobile communication systems. Prominent examples are the 3GPP long term evolution as the successor of UMTS high-speed packet access and the IEEE 802.16 system, advanced by the WiMax forum. On a system level, OFDMA is basically a combination of time and frequency division multiple access. In cellular TDM/FDM systems, inter-cell interference is a major issue that traditionally has been solved by avoiding the use of the same frequency bands in adjacent cells. However, this solution incurs a waste of precious frequency resources. An attractive alternative is the use of beamforming antennas in combination with interference coordination mechanisms, where the transmission of adjacent base stations is coordinated to minimize inter-cell interference. Interference coordination is an important aspect of the system level, which influences many other issues, such as network planning or scheduling mechanisms. In this article, we give an overview of interference coordination as it would apply, for example, to IEEE 802.16e and review the relevant literature. We also discuss and compare interference coordination algorithms, which can be based either on global system knowledge or purely on local system knowledge.

Published in:

IEEE Network  (Volume:22 ,  Issue: 6 )