Cart (Loading....) | Create Account
Close category search window
 

Ferromagnetization of Target Tissues by Interstitial Injection of Ferrofluid: Formulation and Evidence of Efficacy for Magnetic Retraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhigang Wang ; Inst. for Med. Sci. & Technol. (IMSaT), Univ. of Dundee, Dundee, UK ; Lijun Wang ; Brown, S.I. ; Frank, T.G.
more authors

During curative cancer surgery, magnetic retraction could offer advantages over retraction by graspers because of reduced tissue trauma and with the potential for noncontact retraction. To realize magnetic retraction, magnetic fluid was injected into harvested porcine stomachs and an external permanent magnet was used to retract the ferromagnetized tissue. The magnetic forces of four ferrofluids were measured. The results of these experiments showed that iron-oxide-nanoparticle-based ferrofluids do not provide the required retraction force. However, sufficient retraction force is obtained by ferromagnetic microparticles fluids (stainless steel 410, denoted MP-SS410) by virtue of their high magnetization and saturation. In ex vivo surgical retraction experiments, MP-SS410 powder was dispersed in phosphate-buffered saline and other fluids. These ferrofluids were injected into the submucosal layer of harvested porcine stomachs at different concentrations and volumes. The inoculum generated a magnetic retraction force linearly proportional to the concentration and injected volume. Ex vivo surgical retraction, and dissection and resection were possible with a simple magnetic probe. The results of this study indicate that ferromagnetization of tissue can be used to facilitate localized tissue retraction and resection.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.