Cart (Loading....) | Create Account
Close category search window

Encapsulation of an Integrated Neural Interface Device With Parylene C

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jui-Mei Hsu ; Dept. of Mater. Sci. & Eng., Univ. of Utah, Salt Lake City, UT ; Rieth, Loren ; Normann, R.A. ; Tathireddy, P.
more authors

Electronic neural interfaces have been developed to restore function to the nervous system for patients with neural disorders. A conformal and chronically stable dielectric encapsulation is required to protect the neural interface device from the harsh physiological environment and localize the active electrode tips. Chemical vapor deposited Parylene-C films were studied as a potential implantable dielectric encapsulation material using impedance spectroscopy and leakage current measurements. Both tests were performed in 37degC saline solution, and showed that the films provided an electrically insulating encapsulation for more than one year. Isotropic and anisotropic oxygen plasma etching processes were compared for removing the Parylene-C insulation to expose the active electrode tips. Also, the relationship between tip exposure and electrode impedance was determined. The conformity and the uniformity of the Parylene-C coating were assessed using optical microscopy, and small thickness variations on the complex 3-D electrode arrays were observed. Parylene C was found to provide encapsulation and electrical insulation required for such neural interface devices for more than one year. Also, oxygen plasma etching was found to be an effective method to etch and pattern Parylene-C films.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 1 )

Date of Publication:

Jan. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.