Cart (Loading....) | Create Account
Close category search window
 

Jet Flame Ignition in a Supersonic Crossflow Using a Pulsed Nonequilibrium Plasma Discharge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hyungrok Do ; Dept. of Mech. Eng., Stanford Univ., Stanford, CA ; Mungal, M.G. ; Cappelli, M.A.

A short-pulse repetitive discharge is used to ignite hydrogen jet flames in supersonic crossflows. Nonequilibrium plasma is produced by repetitive pulses of 7-kV peak voltage, 20-ns pulsewidth, and 50-kHz repetition rate. Sonic or subsonic hydrogen jets are injected into a pure-oxygen supersonic free-stream flow of Mach numbers M = 1.7-2.3. The fuel injection nozzles and electrodes are mounted flush with the surface of a flat plate that is oriented to be parallel to the flow to minimize stagnation pressure losses associated with generated shock waves. A configuration combining an upstream subsonic oblique jet and a downstream sonic transverse jet serves to provide an adequate flow condition for jet flame ignition. The flow pattern and shock waves induced by the dual hydrogen jets are characterized by Schlieren imaging. Planar-laser-induced fluorescence and emission spectroscopy are employed for imaging the distribution of OH radicals. The OH fluorescence image of the region in the vicinity of the discharge confirms jet flame ignition by the plasma.

Published in:

Plasma Science, IEEE Transactions on  (Volume:36 ,  Issue: 6 )

Date of Publication:

Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.