By Topic

Efficiency of a Hybrid-Type Plasma-Assisted Fuel Reformation System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Igor B. Matveev ; Appl. Plasma Technol., McLean, VA ; Serhiy I. Serbin ; Scott M. Lux

The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existing and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small-to-mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.

Published in:

IEEE Transactions on Plasma Science  (Volume:36 ,  Issue: 6 )