By Topic

Integrating a Piecewise Linear Representation Method and a Neural Network Model for Stock Trading Points Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pei-Chann Chang ; Dept. of Inf. Manage., Yuan Ze Univ., Chungli ; Chin-Yuan Fan ; Chen-Hao Liu

Recently, the piecewise linear representation (PLR) method has been applied to the stock market for pattern matching. As such, similar patterns can be retrieved from historical data and future prices of the stock can be predicted according to the patterns retrieved. In this paper, a different approach is taken by applying PLR to decompose historical data into different segments. As a result, temporary turning points (trough or peak) of the historical stock data can be detected and inputted to the backpropagation neural network (BPN) for supervised training of the model. After this, a new set of test data can trigger the model when a buy or sell point is detected by BPN. An intelligent PLR (IPLR) model is further developed by integrating the genetic algorithm with the PLR to iteratively improve the threshold value of the PLR. Thus, it further increases the profitability of the model. The proposed system is tested on three different types of stocks, i.e., uptrend, steady, and downtrend. The experimental results show that the IPLR approach can make significant amounts of profit on stocks with different variations. In conclusion, the proposed system is very effective and encouraging in that it predicts the future trading points of a specific stock.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:39 ,  Issue: 1 )