By Topic

Image Sequence Denoising via Sparse and Redundant Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matan Protter ; Dept. of Comput. Sci., Technion-Israel Inst. of Technol., Haifa ; Michael Elad

In this paper, we consider denoising of image sequences that are corrupted by zero-mean additive white Gaussian noise. Relative to single image denoising techniques, denoising of sequences aims to also utilize the temporal dimension. This assists in getting both faster algorithms and better output quality. This paper focuses on utilizing sparse and redundant representations for image sequence denoising. In the single image setting, the K-SVD algorithm is used to train a sparsifying dictionary for the corrupted image. This paper generalizes the above algorithm by offering several extensions: i) the atoms used are 3-D; ii) the dictionary is propagated from one frame to the next, reducing the number of required iterations; and iii) averaging is done on patches in both spatial and temporal neighboring locations. These modifications lead to substantial benefits in complexity and denoising performance, compared to simply running the single image algorithm sequentially. The algorithm's performance is experimentally compared to several state-of-the-art algorithms, demonstrating comparable or favorable results.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 1 )