By Topic

Mechanical engineering's role in multi-disciplinary radar design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wiliam c. Dawson ; Raytheon Company 528 Boston Post Road, Sudbury, MA 01776, USA. ; Alan B. Rohwer

Successful execution of a program and full satisfaction of the customer's requirements is a challenge for any contractor. Raytheon Company responds to this challenge by following a proven program execution methodology. The methodology includes all program aspects from financial planning to engineering to validation and test. This discusses the engineering team and the role of the mechanical engineer. A radar system is ultimately an assembly of advanced electronics and software. However, the design, fabrication, assembly, integration, and test Of this complex system requires a coherent multi-disciplinary approach. Raytheon, like many contractors, chooses to assemble an integrated product team (IPT) including all engineering disciplines. Mechanical engineering is integral to satisfying performance requirements, performing preliminary and detailed design, transition of the design to manufacturing, and implementation of the hardware in the field. During definition, mechanical engineering assists fundamental architecture development, conceptual design, and requirements development which precludes issues that are sometimes ignored to the detriment of many programs. These design issues include environmental protection, structural stiffness to meet deflection requirements, cooling system capacity to properly remove dissipated heat, manufacturability to control cost, maintainability to enable repair in the field, and transportability. Recognizing and trading off these issues early greatly increases the Probability Of satisfying customer objectives. This discusses the approach Raytheon is taking to ensure an overall multi-disciplinary solution to our design challenges from the perspective of the mechanical engineer.

Published in:

IEEE Aerospace and Electronic Systems Magazine  (Volume:23 ,  Issue: 11 )