By Topic

A Nonlinear Derivative Scheme Applied to Edge Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Laligant, O. ; Le2i Lab., Univ. de Bourgogne, Le Creusot, France ; Truchetet, F.

This paper presents a nonlinear derivative approach to addressing the problem of discrete edge detection. This edge detection scheme is based on the nonlinear combination of two polarized derivatives. Its main property is a favorable signal-to-noise ratio (SNR) at a very low computation cost and without any regularization. A 2D extension of the method is presented and the benefits of the 2D localization are discussed. The performance of the localization and SNR are compared to that obtained using classical edge detection schemes. Tests of the regularized versions and a theoretical estimation of the SNR improvement complete this work.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 2 )