Cart (Loading....) | Create Account
Close category search window

Convolutive Blind Source Separation Based on Disjointness Maximization of Subband Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tiemin Mei ; Inst. for Signal Process., Univ. of Lubeck, Lubeck ; Mertins, A.

The concept of disjoint component analysis (DCA) is based on the fact that different speech or audio signals are typically more disjoint than mixtures of them. This letter studies the problem of blind separation of convolutive mixtures through the subband-wise maximization of the disjointness of time-frequency representations of the signals. In our approach, we first define a frequency-dependent measure representing the closeness to disjointness of a group of subband signals. Then, this frequency-dependent measure is integrated to form an objective function that only depends on the time-domain parameters of the separation system. Lastly, an efficient natural-gradient-based learning rule is developed for the update of the separation-system coefficients.

Published in:

Signal Processing Letters, IEEE  (Volume:15 )

Date of Publication:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.