By Topic

Submodular Approximation: Sampling-based Algorithms and Lower Bounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We introduce several generalizations of classical computer science problems obtained by replacing simpler objective functions with general submodular functions.The new problems include submodular load balancing, which generalizes load balancing or minimum-makespan scheduling, submodular sparsest cut and submodular balanced cut, which generalize their respective graph cut problems, as well as submodular function minimization with a cardinality lower bound. We establish upper and lower bounds for the approximability of these problems with a polynomial number of queries to a function-value oracle.The approximation guarantees for most of our algorithms are of the order of radic(n/ln n). We show that this is the inherent difficulty of the problems by proving matching lower bounds.We also give an improved lower bound for the problem of approximately learning a monotone submodular function. In addition, we present an algorithm for approximately learning submodular functions with special structure, whose guarantee is close to the lower bound. Although quite restrictive, the class of functions with this structure includes the ones that are used for lower bounds both by us and in previous work. This demonstrates that if there are significantly stronger lower bounds for this problem, they rely on more general submodular functions.

Published in:

Foundations of Computer Science, 2008. FOCS '08. IEEE 49th Annual IEEE Symposium on

Date of Conference:

25-28 Oct. 2008