Cart (Loading....) | Create Account
Close category search window
 

Computing the Tutte Polynomial in Vertex-Exponential Time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bjorklund, A. ; Dept. of Comput. Sci., Lund Univ., Lund ; Husfeldt, T. ; Kaski, P. ; Koivisto, M.

The deletion-contraction algorithm is perhaps the most popular method for computing a host of fundamental graph invariants such as the chromatic, flow, and reliability polynomials in graph theory, the Jones polynomial of an alternating link in knot theory, and the partition functions of the models of Ising, Potts, and Fortuin-Kasteleyn in statistical physics. Prior to this work, deletion-contraction was also the fastest known general-purpose algorithm for these invariants, running in time roughly proportional to the number of spanning trees in the input graph.Here, we give a substantially faster algorithm that computes the Tutte polynomial-and hence, all the aforementioned invariants and more-of an arbitrary graph in time within a polynomial factor of the number of connected vertex sets. The algorithm actually evaluates a multivariate generalization of the Tutte polynomial by making use of an identity due to Fortuin and Kasteleyn. We also provide a polynomial-space variant of the algorithm and give an analogous result for Chung and Graham's cover polynomial.

Published in:

Foundations of Computer Science, 2008. FOCS '08. IEEE 49th Annual IEEE Symposium on

Date of Conference:

25-28 Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.