By Topic

Set Covering with our Eyes Closed

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Grandoni, F. ; Dipt. di Inf. Sist. e Produzione, Univ. di Roma Tor Vergata, Rome ; Gupta, A. ; Leonardi, S. ; Miettinen, P.
more authors

Given a universe U of n elements and a weighted collection l of m subsets of U, the universal set cover problem is to a-priori map each element u epsi U to a set S(u) epsi l containing u, so that X sube U is covered by S(X)=UuepsiXS(u). The aim is finding a mapping such that the cost of S(X) is as close as possible to the optimal set-cover cost for X. (Such problems are also called oblivious or a-priori optimization problems.) Unfortunately, for every universal mapping, the cost of S(X) can be Omega(radicn) times larger than optimal if the set X is adversarially chosen. In this paper we study the performance on average, when X is a set of randomly chosen elements from the universe: we show how to efficiently find a universal map whose expected cost is O(log mn) times the expected optimal cost. In fact, we give a slightly improved analysis and show that this is the best possible. We generalize these ideas to weighted set cover and show similar guarantees to (non-metric) facility location, where we have to balance the facility opening cost with the cost of connecting clients to the facilities. We show applications of our results to universal multi-cut and disc-covering problems, and show how all these universal mappings give us stochastic online algorithms with the same competitive factors.

Published in:

Foundations of Computer Science, 2008. FOCS '08. IEEE 49th Annual IEEE Symposium on

Date of Conference:

25-28 Oct. 2008