By Topic

Matrix Sparsification for Rank and Determinant Computations via Nested Dissection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yuster, R. ; Univ. of Haifa, Haifa

The nested dissection method developed by Lipton, Rose, and Tarjan is a seminal method for quickly performing Gaussian elimination of symmetric real positive definite matrices whose support structure satisfies good separation properties (e.g. planar). One can use the resulting LU factorization to deduce various parameters of the matrix. The main results of this paper show that we can remove the three restrictions of being "symmetric", being "real", and being "positive definite" and still be able to compute the rank and, when relevant, also the absolute determinant, while keeping the running time of nested dissection. Our results are based, in part, on an algorithm that, given an arbitrary square matrix A of order n having m non-zero entries, creates another square matrix B of order n + 2t = O(m) with the property that each row and each column of B contains at most three nonzero entries, and, furthermore, rank(B) = rank (A) + 2t and det(B) = det(A). The running time of this algorithm is only O(m), which is optimal.

Published in:

Foundations of Computer Science, 2008. FOCS '08. IEEE 49th Annual IEEE Symposium on

Date of Conference:

25-28 Oct. 2008