By Topic

A Novel High-Power-Density Three-Level LCC Resonant Converter With Constant-Power-Factor-Control for Charging Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dianbo Fu ; Dept. of Electr. & Comput. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA ; Lee, F.C. ; Yang Qiu ; Wang, F.

This paper proposes a variable-frequency zero-voltage-switching (ZVS) three-level LCC resonant converter that is able to utilize the parasitic components of the high turns-ratio transformer. By applying a three-level structure to the primary side, the voltage stress of the primary switches is half of the input voltage. Low-voltage MOSFETs with better performance can be used in this converter, and zero-current-switching (ZCS) is achieved for rectifier diodes. By applying a magnetic integration technique, only one magnetic component is required in this converter. The power factor concept of resonant converters is proposed and analyzed, and a novel constant power-factor control scheme is proposed. Based on this control strategy, the circulating energy of resonant converters is considerably reduced. High efficiency can be obtained for high-voltage high-power charging applications. The operation principle of the converter is analyzed and verified on a 700-kHz, 3.7-kW prototype, with which a power density of 72 W/inch3 is achieved.

Published in:

Power Electronics, IEEE Transactions on  (Volume:23 ,  Issue: 5 )