By Topic

Joint Source-Channel Distortion Modeling for MPEG-4 Video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sabir, M.F. ; K-WILL Corp., San Jose, CA ; Heath, R.W. ; Bovik, A.C.

Multimedia communication has become one of the main applications in commercial wireless systems. Multimedia sources, mainly consisting of digital images and videos, have high bandwidth requirements. Since bandwidth is a valuable resource, it is important that its use should be optimized for image and video communication. Therefore, interest in developing new joint source-channel coding (JSCC) methods for image and video communication is increasing. Design of any JSCC scheme requires an estimate of the distortion at different source coding rates and under different channel conditions. The common approach to obtain this estimate is via simulations or operational rate-distortion curves. These approaches, however, are computationally intensive and, hence, not feasible for real-time coding and transmission applications. A more feasible approach to estimate distortion is to develop models that predict distortion at different source coding rates and under different channel conditions. Based on this idea, we present a distortion model for estimating the distortion due to quantization and channel errors in MPEG-4 compressed video streams at different source coding rates and channel bit error rates. This model takes into account important aspects of video compression such as transform coding, motion compensation, and variable length coding. Results show that our model estimates distortion within 1.5 dB of actual simulation values in terms of peak-signal-to-noise ratio.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 1 )