By Topic

Robust Trajectory Tracking for an Electrohydraulic Actuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Loukianov, Alexander G. ; Adv. Studies & Res. Center, Nat. Polytech. Inst., Guadalajara, Mexico ; Rivera, Jorge ; Orlov, Y.V. ; Morales Teraoka, E.Y.

Various robust control techniques, such as integral-block, sliding-mode, and H-infinity controls, are combined to design a controller, forcing an electrohydraulic actuator which is driven by a servovalve to track a chaotic reference trajectory. This approach enables one to compensate the inherent nonlinearities of the actuator and reject matched external disturbances and attenuate mismatched external disturbances. The capabilities of the approach are illustrated in a simulation study.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 9 )