By Topic

Energy-Efficient Cross-Layer Protocol of Channel-Aware Geographic-Informed Forwarding in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lili Zhang ; China Potevio Inst. of Technol., Beijing ; Yan Zhang

In the reported metrics of the existing literature, the realistic wireless channel situation is generally ignored in selecting the appropriate next-hop relay node during packet forwarding in wireless sensor networks (WSNs). In this paper, we propose a new energy-efficient local metric, which is called the efficient advancement metric (EAM), for sensor networks. EAM considers both the maximum forwarding distance and the packet's successful transmission probability by taking into account the wireless channel condition. This will enable the forwarding node to choose the most energy-efficient relay node in the geographic-informed routing protocol. Theoretically, we show the existence of the unique optimal relay node to maximize EAM over a typical Nakagami-m channel of a code-division multiple-access (CDMA)-based WSN. Furthermore, based on the proposed metric EAM, we present a cross-layer packet-forwarding protocol channel-aware geographic-informed forwarding (CAGIF) by optimally selecting the relay nodes. CAGIF only requires that nodes have the knowledge of their own location information and the location information of the source and destination nodes. Numerical examples are presented to show the characteristics of EAM and the optimal distance. Compared with the previous geographic packet-forwarding schemes in WSNs, CAGIF consumes much lower energy and generates a significantly decreased signal overhead.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:58 ,  Issue: 6 )