By Topic

Heating Effect of Dielectric Barrier Discharges for Direct Medical Treatment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ayan, H. ; Dept. of Mech. Eng. & Mech., Drexel Univ., Philadelphia, PA ; Fridman, G. ; Staack, D. ; Gutsol, A.F.
more authors

Several variations of dielectric barrier discharge (DBD) have been developed for nondamaging living-tissue sterilization and blood coagulation. This so-called floating electrode DBD (FE-DBD) has been shown by histology to not damage the treated tissue. Nevertheless, preliminary experiments show that a person who touches the FE-DBD can feel the discharge action. Some of these unpleasant sensations are related to the thermal effects of the plasma. These thermal effects and other important parameters of the discharge are strongly dependent on the electrical properties of the discharge, i.e., driving voltage and waveform shape. In this paper, we first employed sinusoidal driving waveform for medical applications. After that, in order to increase the uniformity and decrease the temperature, we employed a microsecond-pulsed waveform system with a few microsecond pulse durations. Both plasma systems have been analyzed and compared for thermal effects and temperature of the discharge in order to determine the possibilities to control the heating effect with driving waveform.

Published in:

Plasma Science, IEEE Transactions on  (Volume:37 ,  Issue: 1 )