By Topic

Hierarchical Segmentation for Hardware Function Evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lee, D.-U. ; Mojix, Inc., Los Angeles, CA ; Cheung, R.C.C. ; Luk, W. ; Villasenor, J.D.

This paper presents a method for evaluating functions based on piecewise polynomial approximations (splines) with a hierarchical segmentation scheme targeting hardware implementation. The methodology provides significant reduction in table size compared to traditional uniform segmentation approaches. The use of hierarchies involving uniform splines and splines with size varying by powers of two is particularly well suited for the coverage of nonlinear regions. The segmentation step is automated and supports user-supplied precision requirements and approximation method. Bit-widths of the coefficients and arithmetic operators are optimized to minimize circuit area and enable a guarantee of 1 unit in the last place (ulp) accuracy at the output. A coefficient transformation technique is also described, which significantly reduces the dynamic ranges of the fixed-point polynomial coefficients. The hierarchical segmentation method is illustrated using a set of functions including -(x/2) log2 x, cos-1(x), radic(-ln(x)) , a high-degree rational function, ln(1+x), and 1/(1+x). Various degree-1 and degree-2 approximation results for precisions between 8 to 24 bits are given. Hardware realizations are demonstrated on a Xilinx Virtex-4 field-programmable gate array (FPGA).

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:17 ,  Issue: 1 )