By Topic

A Theory-Based Decision Heuristic for DPLL(T)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goldwasser, D. ; Comput. Sci., Haifa Univ., Haifa ; Strichman, O. ; Fine, Shai

We study the decision problem of disjunctive linear arithmetic over the reals from the perspective of computational geometry. We show that traversing the linear arrangement induced by the formula's predicates, rather than the DPLL(T) method of traversing the Boolean space, may have an advantage when the number of variables is smaller than the number of predicates (as it is indeed the case in the standard SMT-Lib benchmarks). We then continue by showing a branching heuristic that is based on approximating T-implications, based on a geometric analysis. We achieve modest improvement in run time comparing to the commonly used heuristic used by competitive solvers.

Published in:

Formal Methods in Computer-Aided Design, 2008. FMCAD '08

Date of Conference:

17-20 Nov. 2008