By Topic

Invariant-Strengthened Elimination of Dependent State Elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Michael L. Case ; Dept. of EECS, California Univ., Berkeley, CA ; Alan Mishchenko ; Robert K. Brayton ; Jason Baumgartner
more authors

This work presents a technology-independent synthesis optimization that is effective in reducing the total number of state elements of a design. It works by identifying and eliminating dependent state elements which may be expressed as functions of other registers. For scalability, we rely exclusively on SAT- based analysis in this process. To enable optimal identification of all dependent state elements, we integrate an inductive invariant generation framework. We introduce numerous techniques to heuristically enhance the reduction potential of our method, and experiments confirm that our approach is scalable and is able to reduce state element count by 12% on average in large industrial designs, even after other aggressive optimizations such as min- register retiming have been applied. The method is effective in simplifying later verification efforts.

Published in:

Formal Methods in Computer-Aided Design, 2008. FMCAD '08

Date of Conference:

17-20 Nov. 2008