By Topic

Paper ID EH024: Modeling and experimental verification of geometry effects on piezoelectric energy harvesters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reissman, T. ; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, U.S.A. ; Dietl, J. M. ; Garcia, E.

Energy harvesters have gained much attention as renewable energy source applications within wireless sensor technology. Focus has been directed mostly in two realms, maximizing energy output and efficient conversion via energy management circuitry. More analysis is still needed though on the fundamentals of operation in order to optimize for the size and amount of piezoelectric material needed for energy harvester applications. This work extends on the modeling of piezoelectric cantilevers by adding in the geometry of variable cross-sections, exploring standard rectangular designs and configurations with tapers and curvatures. By changing the geometry, a change in the beam strain profile is induced and thus a change in the voltage output. Experimental results are included to show actual performance outputs of each of the designs.

Published in:

Applications of Ferroelectrics, 2008. ISAF 2008. 17th IEEE International Symposium on the

Date of Conference:

23-28 Feb. 2008