By Topic

Optimal and Suboptimal Power Allocation Schemes for OFDM-based Cognitive Radio Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bansal, G. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC ; Hossain, J. ; Bhargava, V.K.

In this paper, we investigate an optimal power loading algorithm for an OFDM-based cognitive radio (CR) system. The downlink transmission capacity of the CR user is thereby maximized, while the interference introduced to the primary user (PU) remains within a tolerable range. We also propose two suboptimal loading algorithms that are less complex. We also study the effect of a subcarrier nulling mechanism on the performance of the different algorithms under consideration. The performance of the optimal and suboptimal schemes is compared with the performance of the classical power loading algorithms, e.g., water-filling and uniform power but variable rate loading schemes that are used for conventional OFDM-based systems. Presented numerical results show that for a given interference threshold, the proposed optimal scheme allows CR base station (BS) to transmit more power in order to achieve a higher transmission rate than the classical loading algorithms. These results also show that although the proposed suboptimal schemes have certain degradation in performance compared to the optimal scheme, they outperform the classical loading algorithms. We also present numerical results for nulling mechanism. Finally, we investigate the effect of imperfect channel gain information at the transmitter.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 11 )