By Topic

On the Performance of Distributed Polling Service-based Medium Access Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yihan Li ; Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL ; Shiwen Mao ; Panwar, S.S. ; Midkiff, S.F.

It has been shown in the literature that many MAC protocols for wireless networks have a considerable control overhead, which limits their achievable throughput and delay performance. In this paper, we study the problem of improving the efficiency of MAC protocols. We first analyze the popular p- Persistent CSMA scheme and show that it does not achieve 100% throughput.Motivated by insights from polling system theory, we then present three polling service-based MAC schemes, termed PSMACs, for improved performance. The main idea is to serve multiple data frames after a successful contention resolution, thus amortizing the high control overhead and making the protocols more efficient. We present analysis and simulation studies of the proposed schemes. Our results show that PSMAC can effectively improve the throughput and delay performance of p-Persistent CSMA, as well as providing energy savings. We also observe that PSMAC is more efficient for handling the more general and challenging bursty traffic and outperforms p-Persistent CSMA with respect to fairness.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 11 )