Cart (Loading....) | Create Account
Close category search window
 

Evaluating the relation between changeability decay and the characteristics of clones and methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lozano, A. ; Comput. Dept., Open Univ., Milton Keynes ; Wermelinger, M. ; Nuseibeh, B.

In this paper we propose a methodology to evaluate if there is a relation between two code characteristics. The methodology is based on relative risk, an epidemiology formula used to analyze the effect of toxic agents in developing diseases. We present a metaphor in which the disease is changeability decay, measured at method level, and the toxic agent is a source code characteristic considered harmful. However, the formula assesses the strength of the relation between any toxic agent and any disease. We apply the methodology to explore cloning as a toxic agent that increases the risk of changeability decay. Cloning is a good agent to analyze given that although there is some evidence of maintainability issues caused by clones, we do not know which clones are harmful, or to what extent. We compare cloning with other possible dasiatoxic agentspsila, like having high complexity or having high fan-in. We also use the technique to evaluate which clone characteristics (like clone size) may indicate harmful clones, by testing such characteristics as toxic agents. We found that cloning is one of the method characteristics that affects the least changeability decay, and that none of the clone characteristics analyzed are related with changeability decay.

Published in:

Automated Software Engineering - Workshops, 2008. ASE Workshops 2008. 23rd IEEE/ACM International Conference on

Date of Conference:

15-16 Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.