By Topic

Timing error detector design and analysis for orthogonal space-time block code receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dmochowski, P.A. ; Fac. of Eng., Victoria Univ. of Wellington, Wellington ; McLane, Peter J.

A general framework for the design of low complexity timing error detectors (TEDs) for orthogonal space-time block code (OSTBC) receivers is proposed. Specifically, we derive sufficient conditions for a difference-of-threshold-crossings timing error estimate to be robust to channel fading. General expressions for the S-curve, estimation error variance and the signal-to-noise ratio are also obtained. As the designed detectors inherently depend on the properties of the OSTBC under consideration, we derive and evaluate the properties of TEDs for a number of known codes. Simulations are used to assess the system performance with the proposed timing detectors incorporated into the receiver timing loop operating in tracking mode. While the theoretical derivations assume a receiver with perfect channel state information and symbol decisions, simulation results include performance for pilot-symbol-based channel estimation and data symbol detection errors. For the case of frequency-flat Rayleigh fading and QPSK modulation, symbol-error-rate results show timing synchronization loss of less than 0.3 dB for practical timing offsets. In addition it is shown that the receiver is able to track timing drift with a normalized bandwidth of up to 0.001.

Published in:

Communications, IEEE Transactions on  (Volume:56 ,  Issue: 11 )