By Topic

Throughput maximization of ad-hoc wireless networks using adaptive cooperative diversity and truncated ARQ

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lin Dai ; Member, IEEE ; Khaled B. Letaief

We propose a cross-layer design which combines truncated ARQ at the link layer and cooperative diversity at the physical layer. In this scheme, both the source node and the relay nodes utilize an orthogonal space-time block code for packet retransmission. In contrast to previous cooperative diversity protocols, here cooperative diversity is invoked only if the destination node receives an erroneous packet from the source node. In addition, the relay nodes are not fixed and are selected according to the channel conditions using CRC. It will be shown that this combination of adaptive cooperative diversity and truncated ARQ can greatly improve the system throughput compared to the conventional truncated ARQ scheme and fixed cooperative diversity protocols. We further maximize the throughput by optimizing the packet length and modulation level and will show that substantial gains can be achieved by this joint optimization. Since both the packet length and modulation level are usually discrete in practice, a computationally efficient algorithm is further proposed to obtain the discrete optimal packet length and modulation level.

Published in:

IEEE Transactions on Communications  (Volume:56 ,  Issue: 11 )