By Topic

Efficient FFT-Accelerated Approach to Invariant Optical–LIDAR Registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alexander Wong ; Dept. of Syst. Design Eng., Univ. of Waterloo, Waterloo, ON ; Jeff Orchard

This paper presents a fast Fourier transform (FFT)-accelerated approach designed to handle many of the difficulties associated with the registration of optical and light detection and ranging (LIDAR) images. The proposed algorithm utilizes an exhaustive region correspondence search technique to determine the correspondence between regions of interest from the optical image with the LIDAR image over all translations for various rotations. The computational cost associated with exhaustive search is greatly reduced by exploiting the FFT. The substantial differences in intensity mappings between optical and LIDAR images are addressed through local feature mapping transformation optimization. Geometric distortions in the underlying images are dealt with through a geometric transformation estimation process that handles various transformations such as translation, rotation, scaling, shear, and perspective transformations. To account for mismatches caused by factors such as severe contrast differences, the proposed algorithm attempts to prune such outliers using the random sample consensus technique to improve registration accuracy. The proposed algorithm has been tested using various optical and LIDAR images and evaluated based on its registration accuracy. The results indicate that the proposed algorithm is suitable for the multimodal invariant registration of optical and LIDAR images.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:46 ,  Issue: 11 )