By Topic

A Prior Neurophysiologic Knowledge Free Tensor-Based Scheme for Single Trial EEG Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jie Li ; Dept. of Comput. Sci. & Eng., Shanghai Jiao Tong Univ., Shanghai ; Liqing Zhang ; Dacheng Tao ; Han Sun
more authors

Single trial electroencephalogram (EEG) classification is essential in developing brain-computer interfaces (BCIs). However, popular classification algorithms, e.g., common spatial patterns (CSP), usually highly depend on the prior neurophysiologic knowledge for noise removing, although this knowledge is not always known in practical applications. In this paper, a novel tensor-based scheme is proposed for single trial EEG classification, which performs well without the prior neurophysiologic knowledge. In this scheme, EEG signals are represented in the spatial-spectral-temporal domain by the wavelet transform, the multilinear discriminative subspace is reserved by the general tensor discriminant analysis (GTDA), redundant indiscriminative patterns are removed by Fisher score, and the classification is conducted by the support vector machine (SVM). Applications to three datasets confirm the effectiveness and the robustness of the proposed tensor scheme in analyzing EEG signals, especially in the case of lacking prior neurophysiologic knowledge.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 2 )