By Topic

Progress Toward a 1 V Pulse-Driven AC Josephson Voltage Standard

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Samuel P. Benz ; Nat. Inst. of Stand. & Technol., Boulder, CO ; Paul D. Dresselhaus ; Alain Rufenacht ; Norman F. Bergren
more authors

We present a new record root mean square (rms) output voltage of 275 mV, which is a 25% improvement over the maximum that is achieved with previous AC Josephson voltage standard (ACJVS) circuits. We demonstrate the operating margins for these circuits and use them to measure the harmonic distortion of a commercial digitizer. Having exceeded the threshold of 125 mV rms for a single array of Josephson junctions, we propose and discuss the features of an eight-array circuit that is capable of achieving 1 V rms. We investigate the use of a resistive divider to extend the ACJVS voltage accuracy to higher voltages. By the use of a switched-input measurement technique, an integrating sampling digital voltmeter, a resistive voltage divider, and ACJVS synthesized sine waves as reference voltages, we characterize the stability of a commercial calibration source for a few voltages up to 2.7 V.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:58 ,  Issue: 4 )