By Topic

A 40 Gb/s CMOS Serial-Link Receiver With Adaptive Equalization and Clock/Data Recovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chih-Fan Liao ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei ; Shen-Iuan Liu

This paper presents a 40 Gb/s serial-link receiver including an adaptive equalizer and a CDR circuit. A parallel-path equalizing filter is used to compensate the high-frequency loss in copper cables. The adaptation is performed by only varying the gain in the high-pass path, which allows a single loop for proper control and completely removes the RC filters used for separately extracting the high- and low-frequency contents of the signal. A full-rate bang-bang phase detector with only five latches is proposed in the following CDR circuit. Minimizing the number of latches saves the power consumption and the area occupied by inductors. The performance is also improved by avoiding complicated routing of high-frequency signals. The receiver is able to recover 40 Gb/s data passing through a 4 m cable with 10 dB loss at 20 GHz. For an input PRBS of 2 7-1, the recovered clock jitter is 0.3 psrms and 4.3 pspp. The retimed data exhibits 500 mV pp output swing and 9.6 pspp jitter with BER <10-12. Fabricated in 90 nm CMOS technology, the receiver consumes 115 mW , of which 58 mW is dissipated in the equalizer and 57 mW in the CDR.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:43 ,  Issue: 11 )