By Topic

Surveillance video denoising based on background modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yunhai Liu ; Institute of Information and Communication Engineering, Zhejiang University, Hangzhou 310027, China ; Baolei Xie ; Heyi Guo ; Xiaochen Quan
more authors

Because of the characteristics of photoelectric sensors and the working environment of cameras, real-time surveillance video contains much noise, which does not only decrease the subjective visual quality, but also increases the output bitrate of video encoder. The effect of partial spatio-temporal smoothing is not evident. According to the characteristics of surveillance video, we propose a novel algorithm based on video content, setting up adaptive background models to accomplish foreground segmentation, reducing background noise via model parameters and foreground noise via 3D median filter. To the sequences of "hall_monitor" polluted with Gaussian or Poisson noise, the results show that the new algorithm increases PSNR about 8 dB, and saves over 90% of encoder output bitrate.

Published in:

Communications and Networking in China, 2008. ChinaCom 2008. Third International Conference on

Date of Conference:

25-27 Aug. 2008