Cart (Loading....) | Create Account
Close category search window
 

The effect of reflow temperature and time on the formation and growth kinetics of Intermetallic Compounds (IMCs) between Sn-0.7Cu -0.4Co eutectic solder and ENIG/Cu substrate finish

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lili Zhang ; Key Lab. of Adv. Display& Syst. Applic., Shanghai Univ., Shanghai ; Andersson, C. ; Johan Liu ; Zhaonian Cheng

Soldering with lead-free tin-based solder alloys demands substantially higher processing temperatures compared to conventional tin-lead solders, resulting in both significantly greater growth rates of Intermetallic Compounds (IMCs) and dissolution of surface finish layers. In this paper, the interfacial reactions between a new lead-free solder composition, eutectic Sn-0.7Cu- 0.4Co, and Electroless Nickel/ Immersion Gold (ENIG)/Cu surface finish have been investigated as a function of reflow temperature and reflow time. Three different soldering temperatures were used, namely, 240, 250 and 260degC, while the reflow time was varied between 2, 5, 10, 30, 60 and 120 min, respectively. The microstructure of the solder joints was observed by means of Scanning Electron Microscopy (SEM) and the chemical composition of the different phases was analyzed by means of Energy Dispersive X-ray (EDX), in order to study the relationship between interface IMC formation and reflow process parameters. The results show that the IMCs in the bulk solder matrix are different from those built at the interface between the solder and the surface finish layer. In the bulk solder only CoSn2 IMCs were found. The reaction between the molten solder and electroless Ni layer resulted in formation of a ternary (Cu, Ni)6Sn5 IMC at the interface. This interfacial IMC layer was continuous, and with a faceted morphology. The thickness of the IMC layer as a function of both reflow time and temperature was also investigated. The apparent activation energy was also obtained by using one reflow process with different reflow temperatures and times.

Published in:

Electronics System-Integration Technology Conference, 2008. ESTC 2008. 2nd

Date of Conference:

1-4 Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.