Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Network-growth approach to design of feedforward neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung, F.L. ; Dept. of Comput., Hong Kong Polytech., Kowloon, Hong Kong ; Lee, T.

A critical issue in applying the multilayer feedforward networks is the need to predetermine an appropriate network size for the problem being solved. A network-growth approach is pursued to address the problems concurrently and a progressive-training (PT) algorithm is proposed. The algorithm starts training with a one-hidden-node network and a one-pattern training subset. The training subset is then expanded by including one more pattern and the previously trained network, with or without a new hidden node grown, is trained again to cater for the new pattern. Such a process continues until all the available training patterns have been taken into account. At each training stage, convergence is guaranteed and at most one hidden node is added to the previously trained network. Thus the PT algorithm is guaranteed to converge to a finite-size network with a global minimum solution

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:142 ,  Issue: 5 )