By Topic

Robust control of series parallel resonant converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
O. Ojo ; Dept. of Electr. Eng., Tennessee Technol. Univ., Cookeville, TN

A robust controller is designed for the series parallel resonant DC/DC converter based on the linear quadratic Gaussian/loop transfer recovery (LQG/LTR) methodology. The controller structure, comprising a servo-compensator with an internal model, reference state observer, plant and disturbance state observer, ensures tracking of the reference voltage and rejection of system disturbances. The controller performance is insensitive to converter parametric and operational variations. The controller design is based on a converter small-signal model derived using the principles of the describing function and harmonic balance on the nonlinear time-varying converter equations. The controlled converter is shown by computer simulation to perform excellently well, with very good tracking and disturbance capabilities in the presence of changes of load and input voltage

Published in:

IEE Proceedings - Control Theory and Applications  (Volume:142 ,  Issue: 5 )