By Topic

Simultaneous imaging of artery-wall strain and blood flow by high frame rate acquisition of RF signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hasegawa, H. ; Dept. of Electron. Eng., Tohoku Univ., Sendai ; Kanai, H.

Mechanical properties of the arterial walls are significantly altered by atherosclerosis, and various studies have been recently conducted to measure the regional elastic properties (radial strain) of the arterial wall. We have developed a phase-sensitive correlation-based method, namely, the phased-tracking method, to measure the regional radial strain. On the other hand, the measurement of blood flow is an important practical routine in the diagnosis of atherosclerosis. It would be useful if the regional strain of the arterial wall as well as blood flow could be assessed simultaneously. Such measurement would require a high frame rate of several kilohertz. In this study, acquisition of ultrasonic RF echoes at a high frame rate (about 3500 Hz) was achieved using parallel beamforming in which plane waves were transmitted only 3 times and receive beamforming created 24 beams for each transmit beam. The accuracy in measurement of the minute radial strain was evaluated by a basic experiment using a cylindrical phantom. The error of the measured strain from the theoretical strain profile and its standard deviation were 4.8% and 9.5%, respectively. Furthermore, the radial strain of a carotid arterial wall and blood flow were simultaneously imaged in vivo.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:55 ,  Issue: 12 )