By Topic

Multiapproach System Based on Fusion of Multispectral Images for Land-Cover Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Farah, I.R. ; Lab. RIADI, Ecole Nat. des Sci. de l''Inf., Manouba ; Boulila, W. ; Saheb Ettabaa, K. ; Ben Ahmed, M.

Satellite image classification is usually marked by several types of imperfection such as uncertainty, imprecision, and ignorance. Data fusion of additional sensors tries to overcome the types of imperfection by using probability, possibility, and evidence theories. Our approach will lead to improve classification accuracy of satellite images by choosing the optimum theory for a particular image context and proposing a theoretical framework based on a multiagent system and case-based reasoning. We validate our approach trough a set of optical images from the satellite Satellite Positioning and Tracking 4 and radar images from the European Remote Sensing satellite 2, and we show that the overall accuracy is considerably increased from 83% for maximum-likelihood classification applied to multispectral imagery to 94% with the proposed approach.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 12 )