Cart (Loading....) | Create Account
Close category search window
 

An Imaging HF GPR Using Stationary Antennas: Experimental Validation Over the Antarctic Ice Sheet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Terrestrial And Planetary Imaging Radar (TAPIR) is an innovative high-frequency ground-penetrating radar (GPR) developed in the frame of the Martian NetLander mission to probe the subsurface down to kilometric depths. Unlike most GPRs, TAPIR is able to image underground reflectors with stationary antennas. In this paper, after a brief presentation of the instrument, we describe the method developed to interpret data collected during the RAdar of NEtlander in Terre Ade acutelie (RANETA) field survey in Antarctica. This method consists of retrieving the direction of arrival of each detected echo through the measurement of five components of the electromagnetic field (the three magnetic components and the horizontal components of the electric field). Thus, both the range and the direction of each individual reflection or diffraction due to the ice-bedrock interface are resolved. We validated this method on finite-difference time-domain numerically simulated data for different subsurface configurations before applying it to RANETA observations. In particular, the irregular topography of the bedrock in two sounding sites was revealed. We discuss the accuracy of our results.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 12 )

Date of Publication:

Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.